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Abstract—For the velocity and temperature distributions in the middle portion of a long horizontal pipe

with adiabatic walls and differentially heated ends, the three-term expansion of Bejan and Tien is extended to

47 terms in the Rayleigh number. We examine the series for Nusselt number, and extend its utility by

analyzing its singularities. We also estimate the effect of the ends by matching the first-order core solution
with an integral solution for the flow and temperature in the end region.

NOMENCLATURE

C, wall thermal resistance parameter,
equation (7);

Cp coefficients, equation (21);

S coefficients, equation (26);

g gravitational acceleration [ms~2];

I coefficients, equation (25);

K, fluid thermal conductivity
(Wm™'K™1];

K, K,, constants of zeroth-order solution,
equation (14d);

L, pipe length [m];

Nu, Nusselt number, equation (17);

Pr, Prandtl number [v/a];

P, dimensionless pressure, equation
(3¢);

P*, pressure [N m~2];

0, convective heat flux [W];

r, dimensionless radial position, equa-
tion (3a);

r, radial position [m];

7o, radius [m];

Ra, Rayleigh number, equation (3d);

t wall thickness [m];

T, dimensionless temperature, equa-
tion (3c);

T*, temperature [K];

TY, T%, cold and warm end temperatures;

u, v, w, dimensionless radial, circumferen-
tial, axial velocities, equation (3b);

u*, v¥, w*, radial, circumferential, axial velo-
cities [ms™1];

z, dimensionless axial position, equa-
tion (3a);

z*, axial positions [m].

1 Present address: Department of Mechanical Engineer-
ing, Stanford University, Stanford, CA 94305, U.S.A.

Greek symbols

o, fluid thermal diffusivity [m?s~'];
B, coefficient of volumetric thermal ex-
pansion [K™'];

0, angular position;

v, kinematic viscosity [m?s™'];

P density [kgm™3];

v, stream function, equation (9).
Subscripts

0, zeroth-order approximation;

n, nth order approximations.

1. INTRODUCTION

COMPUTER extension of perturbation series in fluid
mechanics has extensively been studied in recent years
[1-3]. All the work indicates that this technique is able
to solve a variety of problems in fluid mechanics. In
general, this technique consists of three procedures.
First, form a perturbation series solution to the
physical problem. A modern computer makes it pos-
sible to obtain dozens or even hundreds of terms,
which contain sufficient information about the analyti-
cal structure of the solution. Second, analyze the
singularities of the perturbation series solution. Fi-
nally, recast the series in order to obtain an analytical
expression for the solution. In the second and third
procedures there is a variety of devices to be used such
as Ratio method, Neville table, Padé method and some
special transformations.

This paper uses computer-extended series to deal
with the velocity and temperature distribution in the
middle portion of a horizontal pipe with different end
temperatures, and analyzes the heat transfer through
the pipe. Bejan and Tien [4] studied this problem and
presented a second-order perturbation solution in
Rayleigh number, Ra (based on end-to-end tempera-
ture differences) for the velocity, temperature distri-
bution and heat transfer. They point out that their
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solution is valid only when the Rayleigh number is
very small, and for cases in which the Rayleigh number
is not small, the higher-order terms beyond the second
will be needed. As a matter of fact, in many real
problems the Rayleigh number is quite large rather
than small. Therefore, we extend their second-order
solution to 47th order and obtain a 24-term Nusselt
number series in Ra®. We further improve the utility of
the series by analyzing the singularities of the series
with Padé and Ratio methods [5]. We obtain an
analytical expression for the Nusselt number, valid in
allranges of Rayleigh numbers (0 < Ra < ). Finally,
we adopt Bejan and Tien’s technique to estimate the
effect of the ends of the pipe on the heat transfer by
matching the first-order core solution with an integral
solution for the flow and temperature in the end
region. We find that the effect is very strong as Ra
increases.

2. EQUATIONS AND PERTURBATION SERIES

The system of coordinates, r, 6, z and velocity
components, u, v, w are indicated in Fig. 1. T and P
siand for fluid temperature and pressure, respectively.
The steady-state governing equations are
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The variables and parameter in equations {1)-(3) have
been nondimensionalized as follows:

r=r¥ry, z=2z%r, (3a)

u = u*ro/a, v=r¥rofa, w= w¥ry/u (3b)
T =(T*~THAT,—T%), p = p*ré/ipa),

a=k(pC,) (o)

Ra = gpr3 (T% ~ T1)/(av) (3d)

where the quantities denoted by an asterisk represent
the dimensional variables of the problem. p, vand k are
density, kinematic viscosity and thermal conductivity.
V2 is the Laplace operator in cylindrical coordinates
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The Boussinesq approximation has been used in the
vertical momentum equation

p=p[1-BT*—T}] (5)

where f is the coefficient of volumetric thermal
expansion. The boundary conditions are

u Odu 16v oOw -0 )
r 5+;%+b}“_ (1) u=pv=w=0 atr=1 (6a)
1/ 0u vou ou v? gre . f?_ZI }‘éfzcér tr=1 6b
E‘(u5+;50“+WE—‘7>3 ~?;sm9 522+r2662 or : ( )
. op u 20 Where C is a measure of circumferential thermal
+Rasin@) T— — + Vi — — — =
(sin 9) or R R o6 (2a) resistance of the wall relative to that of the fluid
kr,
1/ ov vév v uv grs C=-2 7N
= 20 8 = ~ 0056 .
Pr(u8r+r69+waz+ r) v et
+ Raf{cosH T — la_p + Vo4 %6_:4 _ 12 @2b) }f C — oo the wallis adiabatic‘and if C.—r 0 the v&'fall
r é6 re o8 r is isothermal. If we assume that in the middle portion
f the pipe — the core region — the flow can be
1/ aw vé 8 8 o the pipe g
Pr (u 6%) + ;(6‘;} + w%) = - EIZZ + V?w (2c) considered as fully developed, i..
ou dv 0w
T vdT aT —=—=—=0 8)
e — = V2T, a 3 iz
u8r+r09+waz T (3) z 0z C
Cold end Warm end
)) | w* } ))
) )
Q 7. ) L
T :

T2

F1G. 1. Natural counterflow in a long horizontal pipe with ends maintained at different temperatures.



Natural convection in a long horizontal pipe

Then we introduce the stream function v

10y oy
=-— V= —— 9
“=re or ©)
The governing equations become
1 (loy & 1oy 0\,
4y - (-2 _ZYY
Vw_Pr(r@H&r r or 00 vy

/ aT 1 a7\

L4 . 101
+ Ra(coseg - smﬂ;%)

Lo tao)

(10a)

i(Vzw) =

or Pror\ro@ or ror 00

ale )

+ Rasinf - (10b)
0z

1oy T 1oy oT oT
Vr=-___-_ =
T=Cor Taraw e

The boundary conditions are equation (6b) and

d
b= w0 atr=1.
or

(10c)

(11)

Now we expand ¥, w, and T into power-series in Ra

Y= i n//..(%y (12a)
n=0
ot Ra\"

w= 2 w, <~S—) (12b)

T=73T, (ﬁ)" (12¢)
n=0 )

where § is a rescaling parameter which is used to avoid
overflow during the computation on the computer.
Substituting the expressions (12) into equations (10)
and equating terms containing the same power of
Rayleigh number, we obtain the following set of

equations
1 L /1oy, 6 18y, 0
Y, = — s . A Al I
Vi Prngo(r 8 or rord Vien
oT,_ 16T,.
+<cos(9 a‘rl—sine; 0,01>.S (13a)
o _, 16 & (1o, 0wm_, 10¢,0w_,
" W"E5n§0<r 0 or ror 00
oT,_
+sing =t g (13b)
! 1oy, 0T,., 13y,0T,- )
2 —_ - n H_A n n
VT’_,go(r 0 o ror 00
u 13
+n§0w" 0z ( C)
The boundary conditions are
oy
1/1,=a—r'=w,=0 atr=1
iazT, T, T,

=c-

2 e & M=l
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where | is any positive integer. For w,, we need another
boundary condition. From the geometry of the flow, w
should be antisymmetrical with respect to the horizon-
tal plane, ie. wirsin8) = —w{rsin(—6)], implying
V2w=0 at r=0. Therefore, we obtain VZw,=0 at
r=0 as another boundary condition for w,. It is easy to
show that i, would have non-zero solutions only when
lis an even number, and w;, T, would have non-zero

equation (13) becomes

1! 1oy, ¢ 1oy, 6>
iy = — A T WV,
V=5, ,; <r 0 8 r 0 8 Vau-m
0Ty . 15T21«1>
— - ———"=1-§5 (i4
+(cos@ o sm@r 0 (14a)
0 12 (104, 0 10y, 0
—V2 - - 2n ¥ n_
or . M-t Pr "; <_r o8 ér r oOr 00

0T 30—
wz(,_,,,_1+sin9———;“ D.§ (14b)
'z

= 16‘/’2': 0 16!/’2!! a)
2 _— - = - T — —_
ViTa- ,,; (r 00 or r ér 09) MM
éT
+ Wyp-y —0. (14C)
oz

It is also easy to show that the zeroth-order solutions
are

Yo=20
wo = 0 (14d)
TO = klz + k2

where k, and k, are undetermined constants which
depend on the boundary conditions at the ends of the
pipe. In fact, k, is the zeroth order temperature
gradient 0T,/0z. Later, it will be shown that k,
strongly depends on the aspect ratio of the pipe and
Rayleigh number.

In general, the solutions of the equations (14) are of
the following form:

1 4l+1

o = k¥ sin (2i0) - r¥ "2 - E,, ; ; (153)
J

i=1 j=1
1 al-2

Wiy = k37! z Z sin (2i—1)6
i=1 J=1

x r2 Ay (15b)
1 4l-1
Ty =k¥ Y Y sin(2i-1)0
i=1 j=1
X Gy (15¢c)
Then
1 a41-1
Vi =k Y Y sin(2i0)
i=1 j=1
x rH72-Gy 5 (16a)
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V4, = k3 Y Y sin (2i0)

i=1 j=1

x r2i=2 “Fa i (16b)
41-3
Viwy = k! Z Y sin(2i—1)0
i=1 j=1
"Zrlel—l.i.j (16¢c)
I 41-2
VT, =k Y Y sin(2i-1)0
i=1 j=1
Xt Dy (16d)

We use double-precision to compute all the coefficients
A,B,C,D,E, F,Gfrom! = 1tol = 23 on the IBM
370/3033 machine. Using three-dimensional arrays for
these coefficients, we find the computations limited by
storage. To overcome this, we map the three-
dimensional arrays to one-dimensional arrays to save
the two-thirds of each three-dimensional array that is
not used during the computing.
The Nusselt number Nu is defined as

2n 1
Ne Q@  _ 1 ("_T_ WT)
k, mrok(T—T¥k, nk, Jo z
23 Rak 21
xrdrdf =1-— ZNu,( a1> (17
=1 S
where Q is the heat flux across the pipe.
n l-n+1 4n-2 4(-m+3
Nu, = Z Y X Z z
n=1i=1 k=1 m=
Azn-l.i.j'czu—n)n.k.m S
. ik
2(Gi+m) )
0 ik
d; ={ 18
=1 i (18)
The temperature distribution on the pipe wall is
23 R k 2i~1
T(, 0, 2k, =z + 3 A,( ‘; ‘) (19)
1=1
where
1 4l-1
A=Y Y sinQQi-1)8-Cy_y ; o (20

i=1 j=1
The solution (2.15) gives a four-celled flow pattern (see
Fig. 2). As the order increases the more cells flow
pattern (corresponding to higher order solution) will
be added to the basic four-cell flow pattern.
We calculate the coefficients of the Nusselt number
series (17) and rewrite (17) as

N 23
k“ Y C,Xx" @1
1 n=0

where X =(Rak, /S)?. The coefficients C, are shown in
Table 1. Note that when n=1, the equation (21) is
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Fourth order

Second order

F16. 2. Pipe cross-section showing streamlines of the second-
order and fourth-order flow pattern.

exactly Bejan and Tien's solution [4]. From now on we
shall concentrate on the heat transfer problem and
analyze the Nusselt number series.

3. EXTENSION OF THE UTILITY OF THE
NUSSELT NUMBER SERIES

We have extended Bejan and Tien’s two-term
solution to 24 terms for Nusselt number. But this series
(21) still has limited utility for description of the
physical quantity of interest because of its limited
radius of convergence. Figure 3 shows that the series
diverges when X > 0.1. The higher order coefficients,
C,, however, contain a great deal of information about
the analytical structure of the solution. We may find
the analytical structure of the series by analyzing the
singularities of the series.

The signs of the series (21) soon show a repeated
pattern of five

t+——F =t - —+ =+ 4+,
-+ -+ 4+, -

-+ =+ +,

This indicates that the series (21) has a conjugate pair
of singularities nearest the origin in the complex plane
of X =(Rak,/S)?. Padé approximants to the series (21)
and d/dx In (21) show that this pair of singularities is
located at

X, = —0.0795 + 0.0634 - . (22)
If we rewrite equation (22) as

X, = Re*".

Then R, will be the radius of the convergence of (21),
which is

R, = 0.1017 with 8 = 2.468. (23)

Thus the series (21) will diverge when X > 0.1017 as

indicated by Fig. 3. But this pair of singularities do not

have physical meaning; therefore, we may extend the

utility of (21) by mapping them away. To do so, we use
the following transformation
B X

JIX=X)(X-XxH]

This maps the singularities to infinity in the Y-plane

and maps infinity in the x-plane to a finite point in the

24



Natural convection in a long horizontal pipe

Table 1. Coefficients of Nusselt number series

N cn 8n fn fn+‘l/fn

1 1.0000000D 00 1,0000000D 00 1,0000000D 00

2  1.5190972p 01 1,5443385D 01 2,5898557D 01 2.5898557D 01
3 -1,5301212D 01 1.,1911683D 01 5,9398128D 01 2.2934917D 00
4 -3.5833736D 02 1.181,608D 01 1,4861865D 02 2,5020763D 00
S L4.8657932D 03 1,1355467D 01 3.8337272D 02 2,5795734D 00
6 -,0783066D OL 1,1281950D 01 1,0031135D 03 2,6165491D 00
7  2.3297050D 05 1,1146633D 01 2,6L)8724D 03 2,.6366630D 00
8 -4.8096931D 05 1,1098503D 01 7,0051916D 03 2,6485935D 00
9 -8,7932865D 06 1,1040237D 01 1,8606680D 04 2,6561272D 00
10 1,4786326D 08 1,1007532D 01 14,9514562D O4 2.6611175D 00
11 -1,3468506D 09 1,0974554D 01 1,3193407D 05 2,.6645508D 00
12 7,3462274D 09 1,0950583D 01 3.5186637D 05 2,6669865D 00
13  1,2933260D 09 1,092792LD 01 9,3904669D 05 2,6687594D 00
1 -5,8659099D 11 1,0909037D 01 2,.5073283D 06 2,6700784D 00
15 8,0791023D 12 1,0891421D 01 6,6972712D 06 2,6710787D 00
16 -6,6413017D 13 1,0875692D 01 1.7894105D 07 2.6718501D 00
17  2,8083924D 14 1.0860964D 01 L,.7821181D 07 2.6T72454L5D 00
18  1.,4883696D 15 1,0847354D 01 1,2782289D 08 2.672934L7D 00
19 =4 4 741005D 16 1,0834516D 01 3.,4171167D 08 2,6733214D 00
20 5,1723856D 17 1.,0822L412D 01 9,1361295D 08 2,6736369D 00
21 -3,6539754D 18 1,0810978D 01  2,4429073D 09 2,6738975D 00
22  8,5260432D 18 1,0799988D 01 6,5326156D 09 2,6741152D 00
23 1,9197898D 20 1,0788735D 01 1.7470169D 10 2,6742992D 00
2y -3.5401249D 21 1,0774276D 01 4.,6723203D 10 2,6744563D 00
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Y-plane. After the transformation the series (21)
becomes

23
N_ 5 g 25)
kl n=0

where the g, are new coefficients shown in Table 1. We
again form Padé approximants to (25) and d/dy In (25)
to analyze the singularities of (25). We find two
singularities on the real axis of the Y-plane, at 1.000
and —1.677. The nearest singularity lies at ¥ = 1,
which is consistent with the fixed sign pattern of the
coefficient g,. Therefore, the series (25) has unity radius
of convergence, which corresponds to X — = or Ra —
oc. In principle, the series (25) can be used in the case of
Ra — o0. In a practical sense however, the utility
of equation (25) is still limited because of its slow
convergence when Ra gets large or Y — 1. In order to
extend the utility of equation (25), we need to know the
nature of the singularity at Y = 1. Before we analyze
the nature of this singularity, we use an Euler transfor-
mation to map away the nonphysical singularity on
the negative axis to reduce its influence on (25). The
Euler transformation Z=Y/(Y+1.677) maps the

singularity at — 1.677 to infinity in the z-plane and
maps the singularity at 1 to 0.3736. In the z-plane
the series (25) becomes

\4 terms

\

TN\ T TTTTT]

! | I
g 10" 10° 10!

(Ra bq/s)2
FiG. 3. Nusselt number Nu/k, as a function of (Rak,/S)? in

different order approximation, i.e. second-, third-, fourth- and
fifth-order approximation.
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Nu 23
Moy gz
kl n=0

where the f, are new coefficients shown in Table 1. We
form Padé approximants to the new series (26) and
d/dz In (26), and find that the nearest singularity is now
located at Z, = 0.3737. The Domb-Sykes plot (Fig. 4)
and Neville table to Domb-Sykes ratios also suggest
that the nearest singularity is located at Z, = 0.3736.
In order to analyze the nature of this singularity we
suppose

(26)

y—”w(lmz—)’ as Z - Z.. (27
kl N Z(‘

Then the logarithmic derivative of (27) will become
a/(Z— Z,). Therefore, the residue of the Padé appro-
ximants to d/dz In (26) will give an estimate of the
exponent «. This value is about —0.98. On the other
hand, from the Ratio method we have the sequences

for series (26)

1, sf"f“ ~ Zi[l - LZ—“ + o(%)] (28a)

l+a= n(n+1)(%— 1>.

(28b)

A Neville table for equation 28b gives the estimates of o
as —0.986 and —0.987 from quadratic and cubic
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2877

2670 °

L/t
—

266C -

1/n

F1G. 4. Domb ratio in the z-plane.

These determine the values of k, and k,

extrapolations, respectively. Therefore, we may make a ky = ro/L (33)
mimic function for series (26) k, = 0.
N zZ \!
Nu _ (1 _Z V' 'pg (29) Then (29) becomes
ky 0.3736 L 7 A\
where B(Z) is an extracted series Nu .;; - (1 a W) B2) (34
23
B(Z)=} eZ" (30)
n=0
We may use Padé approximants to represent B(Z)
B(Z) = (1+0.145 x 10* Z—-0.108 x 10° 2% + 0.174 x 10* Z3 — 0.159 x 10° Z* + 0.669 x 10%Z°
—0.149 x 10°Z° + 0.186 x 10°Z7 — 0.129 x 10° Z% + 0.455 x 10° Z° — 0.648 x 10* Z'°
+0.168 x 10°Z'')/(1-0.880 x 10'Z + 0.105 x 10 Z? — 0.772 x 10 Z°
+0.288 x 10* Z* — 0.589 x 10* Z°> + 0.682 x 10* Z® — 0437 x 10* 2’
+0.141 x 10* Z® — 0.180 x 10° Z® + 0.364 x 10! Z'9) (31)
4. EFFECT OF THE END BOUNDARY CONDITION where Y 3
| ON THE SOLUTI?N YT ie7 (35a)
Notice that we have not considered the boundary
conditions in the z-direction so far, and there is an X
undetermined constant k; in the solution for the Y = (35b)
X — _X*
Nusselt number (17, 29). The value of k, depends JI X (X =X3]
strongly on the end boundary conditions of the pipe. If 2
. Ra(ry/L)
we suppose the aspect ratio extremely small ry/L — 0, X = —5 |- (35¢)

then the end boundary condition may be considered as
follows: Equation (34) is an extreme situation when Ra is fixed
and ro/L approaches zero (see Bejan and Tien [4]). But

T(r,0,0) =0 T(r 0, L x~ 1. . ..
r ) r /ro) in the real problem, the aspect ratio is fixed and

(32)



Natural convection in a long horizontal pipe

Rayleigh number is becoming very large. In that case,
the end regions of the pipe become very important, and
the constants k, and k, depend very strongly on the
Rayleigh number as well as the aspect ratio of the
pipe.

In order to estimate the effect of the end condition of
the pipe on the heat transfer, we have matched the first-
order core solution with an integral solution for the
flow and temperature field in the end regions.

We define the end region length J as that segment of
the horizontal enclosure outside which, Z > §, the core
solutions are valid. The integral energy and momen-
tum equations within the end region are

1301

).-5=0 (39a)

(v).=5 (39b)

W), =5 = R;k‘ (r* ~ 1)sin @ (39¢)
R

(T)=5 = 1‘;2‘ (r*—=3r3+4r)sinf + k;z + k,. (39d)

Substituting expressions (38) into the integral equa-
tions (36) and (37) yields

ff < ) drde—j f < ) drd0+f f j ( )drd()dz
0z z=0 0z z2=0 ol 67‘
- f f (uT),-od8dz —f J (WT),-,dr do
o Jo
J f j —drdfd: (36)
1 f2n a 2
Ra sin 6 (T),;dr df = f L O i R
o Jo r 20 62 F/e=s
0
+[j ( aw+”‘3_‘ﬂ w—w> d6 dz
JoJo or rdo 02 Jy=g
é M2r
+ J‘ f [(Vzw)r=1 - (V 2w)r=0] df dz
0JO
1 f2n
- f j [(V*u),—5 — (V2 u); =o] dr df
0 Jo
1 M2n 1
; f J LR (1)
oJo T
Then we have to select reasonable profiles for the Ra*k} 4k,
velocity and temperature distributions inside the end 1.2637 1536 + 6k, — e 0 (40)
region. We choose the following profiles
o = 0.87057. (€39

Yo 3R;;k1 g(l §>(2r —r?—~1)-sin@ (38a)
3R k
3‘; 3 s (1 - §>(r“ —4r® + 4r —1)sin6
(38b)

_ Rak

2V AW

8 (5> (3 25>
2

= (T; - 6k1)|:2§— - (g) ] + kyz

which satisfy the continuity equations (1) and boun-
dary conditions and match the following first-order
core solutions

(38¢)

(38d)

We assume the temperature field is symmetric about
the center of the pipe, i.e.

T(O 6 l£) -
777 21 2
which yields
e @)
Combining equations (42) and (40), we obtain
ak} + bk, +¢c=0 43)

wherea = 8.2269 x 107 % Ra?, b = 6 + 2.2973 (L/r,),
¢ = —2.2973. Obviously, k, very strongly depends on
the Rayleigh number Ra and the aspect ratio ry/L.
From equation (43), if ro/L — 0 while Ra is fixed then
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ky — ro/L. This is the extreme situation in which the
core flow pattern dominates the heat transfer through
the pipe. The equation (29) combined with (43) and
equation (34) are shown in Fig. 5.

Bejon and Ten (1978}
, Kimura and Begn (19280}
experiments r./L = 0056
e >O
> % =00005
~
= . Novere e vedoe e 3 %
2 cere
. $+0008
PRS- ot s o ol e e
o
T-Ooﬁ
PP ORI, UL S (NP Iy WOUR VS L A
i L L
(o s ST s L SR o LR o
Ralr, /L)

FiG. 5. Nusselt number vs Rayleigh number according to
equations {34) and (29} combined with {43).

Finally we should peint out that we have assumed
fully developed flow in the middle portion of the pipe.
This means that ro/L must be small enough so that our
assumption makes sense. Kimura and Bejan’s experi-

Tsan-HSING SHIH

mental study {6] shows that the core flow is still not
fully developed at ro/L = 0.056. We cite their results in
Fig. 5.
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DEVELOPPEMENT NUMERIQUE DE SERIE: CONVECTION NATURELLE DANS UN
TUBE HORIZONTAL AVEC DIFFERENTES TEMPERATURE AUX EXTREMITES

Résumé—Le développement & trois termes de Bejan et Tien est étendu a 47 termes selon le nombre de

Rayleigh pour les distributions de vitesse et de température dans la portion médiane d’un tube horizontal

avec une paroi adiabatique et des extrémités chauffées différemment. On examine la série pour le nombre de

Nusselt et on étend son utilité en analysant ses singularités. On estime aussi I'effet des extrémités en testant la

solution du noyau de premier ordre avec une solution intégrale pour I'écoulement et 1a température dans la
région terminale.

DURCH COMPUTER ERWEITERTE REIHENENTWICKLUNG : FREIE KONVEKTION IN
EINEM LANGEN HORIZONTALEN ROHR MIT VERSCHIEDENEN ENDTEMPERATUREN

Zasammenfassung—Fiir die Geschwindigkeits- und die Temperaturprofile in der mittleren Region eines

langen horizontalen Rohres mit adiabaten Winden und unterschiedlich beheizten Enden wurde die

dreigliedrige Reihe von Bejan und Tien auf 47 Glieder in der Rayleigh-Zahl erweitert. Die

Reihenentwicklung der Nusselt-Zahl wird untersucht und ihre Anwendbarkeit durch Untersuchung ihrer

Singularititen erweitert. Der Einflul der Enden wird durch Anpassung der Losung fiir den Kern, einer

Losung 1. Grades, an die integrale Lésung fiir Stromungsgeschwindigkeit und Temperatur in den
Endgebieten abgeschitzt.



Natural convection in a long horizontal pipe

UCCNEJOBAHME ECTECTBEHHOM KOHBEKLHMU B JUIMHHON IOPH3OHTAJILHON
TPYBE C PAZHBIMH TEMIEPATYPAMH HA KOHUAX C NOMOHBKO DJEKTPOHHO-
BBIYUCJNTEJIBHOR MAIINHBI

Annotaimms — [ns onpeneneHus npoduseil CKOPOCTH M TEMNEPATYPhl B LEHTPaNbHON 4acTH UIHHHOM

FOPU3OHTaNLHON TPYOsI ¢ anHabaTHYECKHMH CTEHKAMH M Da3HbIMH TeMIlepaTypaMH Ha KOHUAX Tpex-

4JICHHOE Pa3noXeHHe, npennoxesnoe Benxanom u Trenom, o6obueHo Ha 47 wieHoB no yKcay Penes.

Hccnenyetcs pasnoxenme B pan no 4uciay HycceabTa M HA OCHOBAHMH aHaNM3a CHHTYJIAPHOCTEH

pacinpsercs obaacTh ero npHMeHMMOCTH. Taxkke maHa OueHKa KOHUEeBHLIX 3pdexToB myTem cono-

CTaBJIEHHA PEILCHHA NEPBOTO NMOPAIKA /1% HEHTPAIbHONH YaCTH € HHTETPATbHBIM DEIICHHEM [UIS TEUEHHS
H TEMNEpaTyphl HAa KOHUAX TPYOhI
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